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Abstract—A tinglucal tributyl[4,6-O-bis(t-butyl)silylidene-3-O-tris(isopropyl)silylJtin 7 and a triflate derived from isolevoglucose-
none (1R,4R,5R)-4-benzyloxy-6,8-dioxabicyclo[3.2.1]oct-2-en-2-yl trifluoromethanesulfonate 10 undergo the carbonylative Stille
condensation under special conditions requiring AsPhs, LiCl, and powdered charcoal as co-catalysts to give a cross-conjugated die-
none 6 in which the bicyclic alkene moiety is more reactive than the glucal alkene moiety. This allows the regio- and stereoselective
hydrogenation of the bicyclic alkene moiety giving an enone 21 that can be reduced stereoselectively to an allylic alcohol 22. Hyd-
roboration of the glucal and bicyclic acetal opening generates a C(1—4) linked disaccharide 25 in which a protected form of B-b-
glucopyranose is attached at position C(4) of a a-D-3-deoxy-ribo-hexopyranoside derivative via a (S)-hydroxymethano linker.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Carbohydrates regulate the sociology of cells and play a
crucial role in the construction of multicellular organs
and organisms.! With a improved understanding of
the functions that cell-surface carbohydrates play in dis-
orders such as inflammation, viral, and bacterial infec-
tions, to cancer, etc., numerous carbohydrate analogs
have entered clinical studies. Disaccharides containing
them offer the advantage of being resistant to acidic
and enzymatic hydrolysis.?* They can also be inhibitors
of glycosidases and glycosyltransferases.'™ Since the
first syntheses of methylene bridged analogs of maltose
(o-D-Glcp-C(1—4)-0-D-Glecp-OMe) and cellobiose (B-
D-Glcp-C(1—4)-0-D-Glcp-OMe) by Kishi et al. in
1987,% several approaches have been proposed for the
preparation of C(1—4)-linked disaccharides.>-

We have shown that the Oshima—Nozaki’ condensation
of monosaccharide-derived carbaldehydes 1 and iso-
levoglucosenone 2 allows quick access to C(1—3)-linked
disaccharides®® and  C(1—3)-imino-disaccharides’
(Scheme 1). A convergent synthesis of C(1—2)- and
C(1—4)-linked imino-disaccharides was realized by
applying Takai-Oshima-Nozaki-Kishi coupling of
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hydroxyproline-derived carbaldehydes with levoglucose-
none'! and isolevoglucosenone-derived triflates.!®!!
Witczak et al.!? have shown that levoglucosenone under-
goes Michael addition of glycosylnitromethanes.
Through this reaction they prepared C-linked analogs
of B-p-glucopyranosyl-(1—4)-3-deoxy-D-ribo-hexopyra-
nose.

2. Results and discussion
In 1997 our group showed that C-glycosides and

advanced C(1—1)-disaccharide precursors can be
obtained in one step through carbonylative Stille cou-
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pling reactions.'®> We report here that tinglucal deriva-
tive 7' and isolevoglucosenone-derived triflate 10 can
also be coupled in a carbonylative Stille reaction.'® Tin-
glucal 7 was obtained by deprotecting the fully acetyl-
ated glucal 4 with MeONa/MeOH. The 4- and 6-
hydroxyl-positions were protected by (z-Bu),Si(O-
SO,CF3), in anhydrous DMF (—40 to —20 °C, over
18 h), to give 5 in 95% yield. Finally the last free hydr-
oxyl group was silylated with TIPSCl/imidazole
(DMF, 50 °C, 36 h) giving 6. Treatment of 6 with #-
BuLi, followed by Bu3SnCl furnished the tinglucal
derivative 7 in 90% yield (Scheme 2).

Triflate 10'° was synthesized starting from isolevoglu-
cosenone, which undergoes a 1,4-addition of BnOH in
the presence of Et;N. By deprotonation with LDA,
followed by quenching of the resulting enolate with 2-
N,N-[bis(trifluoromethanesulfonyl)amino]-5-chloropyr-
idine triflate 10 was obtained in 85% yield (Scheme 3).
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The carbonylative Stille cross-coupling'®!7 of tinglucal 7

with triflate 10'! was possible using Pd,(dba); in the
presence of PhsAs (5 mol %), LiCl (3 equiv), powdered
charcoal, and 50 bar atmosphere of CO and heating to
50 °C (Scheme 4).

At higher temperatures only direct coupling between the
tinglucal 7 and triflate 10 was observed. At lower tem-
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peratures no reaction took place and the starting mate-
rials were recovered (Table 1). The temperature range
under which the reaction can be carried out varies from
45 to 55°C.

Table 1. Attempted carbonylative Stille cross-coupling of 7 and 10

Entry  Conditions® Yield of
11 (%)

1 CO (50 bar), 50 °C, 23
LiCl (1 equiv) charcoal (powder), NMP

2 CO (50 bar), 50 °C, 35
LiCl (2 equiv) C (powder), NMP

3 CO (50 bar), 50 °C, 79
LiCl (3 equiv) C (powder), NMP

4 CO (50 bar), 50 °C, 57
LiCl (4 equiv) C (powder, catalytic), NMP

5 CO (50 bar), 50 °C, 0
LiCl (3 equiv) C (solid), NMP

6 CO (50 bar), 50 °C, 0
LiCl (3 equiv) C (powder), THF

7 CO (50 bar), 50 °C, 45
LiCl (3 equiv) C (powder), THF

8 CO (50 bar), 50 °C, 0
C (powder), THF

9 CO (50 bar), 60 °C, 0°
LiCl (3 equiv) C (powder), NMP

10 CO (40 bar), 40 °C, 0
LiCl (3 equiv) C (powder), NMP

11 CO (60 bar), 50 °C, 0

LiCl (1 equiv) C (powder), NMP

4 Pd,dbas (5 mol wt %), AsPhs (5 mol wt %).
®Only self-coupled product obtained.

We investigated also the influence of CO-pressure on the
outcome of the reaction. The optimum working pressure
appears to be 50 bar (Table 1, entries 1-4, 7), above
60 bar (entry 11) no reaction took place and the starting
materials decomposed, below 40 bar (entry 10) no reac-
tion took place. The yield was the best (79%, entry 3)
using N-methylpyrrolidone (NMP) as solvent. The
amount of LiCl is crucial for success. With a Pd/LiCl
ratio of 1:1 the yield is rather low (23% entry 1). Optimal
Pd/LiCl ratio is 1:3 and for Pd(0)/Ph;As the ratio must
be 1:1. Replacement of Ph;As for Ph;P or the use of
solid charcoal instead of powdered charcoal failed to
give product of carbonylative coupling! This is explained
by the property of powdered charcoal to disperse metal-
lic palladium and to allow efficient resolubilization into
active catalytical species. Other protected glucal (4,6-O-
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isopropylidene-3-O-methoxymethyl, 4,6-O-isopropylid-
ene-3-O-tri(isopropyl) and 3-O-[(z-butyl)dimethylsilyl]-
tinglucal) than 7 also undergo carbonylative Stille
couplings with triflate 10 under our optimal conditions,
but with lower yields. Moreover, the subsequent conver-
sions of the corresponding cross-conjugated dienones
were lower yielded than those described here.

It was also possible to couple triflate 10 with stannylated
galactal 16. This galactal was synthesized starting from
fully acetylated galactal 13. Methanolysis (MeONa/
MeOH) of 13 followed by silylation with (i-Pr);SiCl/
imidazole in DMF provided the silylated ether 14. The
sterically hindered HO-C(2) moiety was then protected
as a methoxymethyl ether with MeOCH,Cl/Hiinig’s
base under heating. Finally, 15 was stannylated by treat-
ment with z-BuLi and subsequent reaction with SnBu;Cl
(Scheme 5). The tin-galactal 16 has been cross-coupled
with CO and triflate 10 giving 12 in 73% yield. The yield
of this coupling is somewhat lower than for the reaction
7+10+CO—11 (79%), perhaps because of greater steric
hindrance with 16 than with 7. With these new condi-
tions for the Stille coupling we examined whether it
could be applied to the carbonylative cross-coupling of
two glucal derivatives, a logical approach for the prepa-
ration of C(1—1)-linked disaccharide precursors.'?
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Thus, the iodinated glucal derivative 17 was made by
iodination of the tinglucal 7. Reaction of 17+CO+7
under our optimized conditions (Table 1) led to dienone
19 that was isolated in 81% yield (Scheme 6). This is a
significant improvement compared to our preliminary
work.!® Also cross-coupling of 7+18+CO under the
same conditions led to dienone 20 in 79%. To our
surprise however, when tin-galactal derivative 16 was
combined with the corresponding iodogalactal 18 and
CO, no product of cross-coupling could be detected.
This failure is probably due to the greater bulk of 20
and its iodo-analog than in the glucal derivatives 7
and 17 (Scheme 6).

The cross-conjugated dienone 11 has been converted
into a C(1—4)-linked disaccharide glycosyl donor
(Scheme 7). Which combines B-p-glucopyranosyl unit
with a 3-deoxy-D-ribo-hexopyranosyl moiety through a
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(S)-hydroxymethano linker. Probably because of the
ring-strain of the 1,6-anhydrohexose unit of 11 its
C(2,3)-double bond is more reactive than the double
bond of the glucal moiety. For instance, chemo- and
stereoselective hydrogenation of the bicyclic alkene
could be carried with PhSiH; in the presence of
Mo(CO)s as catalyst, giving enone 21 in 55% yield.
The structure of 21 was deduced from its 'H NMR
CJsqa =12, J3p4=6.7, and *J, 5 = 0.6) and 2D-NOE-
SY-'H NMR spectrum. Reduction of 21 with (i-
Bu),AIH gave a 2:1 mixture of allylic alcohol 22 and
its diastereomer in 85% yield. With K-Selectride only
22 was formed and isolated in 75% yield. Hydroboration
(BH5'THF) of 22 gave diol 23 (65%) with high diastereo-
selectivity, probably because the a-face of the glucal
alkene moiety is less sterically hindered then its B-face.
The B-C-p-glucopyranosyl configuration was confirmed
by the vicinal coupling constants °J, 3 =10.4 and
3J3.4 = 9.2 Hz and by the 2D-NOESY-'H NMR spec-
trum of 23. Protection of diol 23 as an acetonide under
standard conditions (Me,C(OMe),, p-TsOH) produced
24 (73%). Its "H NMR spectrum displays typical cou-
pling constants for proton pairs H-4/H-5 (1.2 Hz), H-
2'/H-3' (9.2 Hz), H-3'/H-4’ (9.2 Hz). The (1’'S)-configu-
ration was indicated by 3J1r,2r = 6.7 Hz and confirmed
by the 'C NMR spectrum: dc (Me,C) =253 and
23.2 ppm.!8 Although the 1,6-anhydrohexose 24 is a
potential glycosyl donor, we converted it into the thio-
glycoside 25, another potential glycosyl donor. Thus
treatment of 24 with Me;SiSPh and Znl, provided 25
in 75% yield, after work up with K,CO3/MeOH. The
"H NMR spectrum of 25 proved its structure, in partic-
ular 3J1,2=4.9 Hz, indicated o-thioglycosylation, and
3J1/,2r =6.7, 3J2r,3r =94, and 3J3r,4r = 7.6 Hz proved the
B-glucopyranosyl structure. The (1’S)-configuration
was confirmed by the '*C NMR spectrum'® which
showed dc (Me>C) = 25.9 and 23.7 Hz (Scheme 7).

3. Conclusion

Since our first report on the application of the carbonyl-
ative Stille cross-coupling reaction generating C(1—1)-
disaccharide precursors, better conditions have been
developed that allow one to create readily advanced
precursors for C(1—4)-disaccharides. The method
condenses adequately protected tinglucal derivatives
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with a triflate derived from isolevoglucosenone and
carbon monoxide. For one of the cross-conjugated
dienones so obtained 11 we demonstrated interesting
chemo- and stereoselectivity in its reduction reaction
with PhSiH3/Mo(CO)s first, and then with K-Selectride.
After hydroboration of the allylic alcohol and standard
transformations a protected C(1—4) disaccharide in
which a B-p-glucopyranosyl group is C-linked at C(4)
of a phenylthio-3-deoxy-a-p-ribopyranoside via a linker
has been prepared for the first time.

4. Experimental
4.1. General remarks

Commercial reagents (Fluka, Aldrich) were used with-
out purification. Solvents were distilled prior to use:
THF from Na and benzophenone. Sulfur dioxide was
dried by passing through a column filled with P,Os,
Al,O5 for drying (Fluka 06400), Al,O3 basic activated

3C NMR: 8¢: 25.9 and 23.8 ppm

Type 5016A Brockman I (Aldrich 19,944-3). Light
petroleum ether used refers to the fraction boiling at
40-60 °C. Solutions after reactions and extractions were
evaporated in a rotatory evaporator under reduced pres-
sure. Liquid/solid flash chromatography (FC): columns
of silica gel (0.040-0.63 mm, Merck no 9385 silica gel
60, 240—400 mesh). TLC for reaction monitoring: Merck
silica gel 60F,s4 plates; detection by UV light; Pancaldi
reagent [(NHy)sMoO,, Ce(SOy4),, H,SO4 H,0] or
KMnO,. IR spectra: Perkin-Elmer-1420 spectrometer.
'H NMR spectra: Bruker-ARX-400 spectrometer
(400 MHz); 6 (H) in parts per million relative to the sol-
vent’s residual 'H signal [CHCl;,  (H) 7.27] as internal
reference; all 'H assignments were confirmed by 2D-
COSY-45 spectra. 3*C NMR spectra: same instrument
as above (100.6 MHz); ¢ (C) in parts per million relative
to solvent C-signal [CDCl3;, 6 (C) 77.0] as internal refer-
ence; coupling constants J in hertz. MS: Nermag R-10-
10C, chemical ionization (NH3) mode m/z (amu) [% rel-
ative base peak (100%)], HRMS: Jeol AX-505. Elemen-
tal analyses: Ilse Beetz, D-96301 Kronach, Germany.
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4.2. (—)-4,6-0-Bis(tert-butylsilylidene)-3-O-tris(isoprop-
yDsilyl-p-glucal 6

Compound 5'° (3.4 g, 11.91 mmol) was dissolved in an-
hyd DMF (68 mL) and a mixture of imidazole (2.0 g,
29.58 mmol), and tri(isopropyl)chlorosilane (4.5 mL,
21.34 mmol) was added dropwise under stirring at
20 °C. After stirring at 60 °C for 36 h, the mixture was
cooled to 20 °C and hexane (300 mL) was added. The
solution was washed with water (120 mL, three times)
and brine (120 mL). The water phase was extracted with
hexane (100 mL, two times). The organic phases were
combined, dried over MgSQO,, and concentrated in
vacuo. FC (AcOEt/light petroleum ether, 0.2:10) 5.1 g
(90" o), colorless oil. [0 = —54, [a]3, = =57,
2 = —65, [o]% =115, [42 =139 (¢ 1.2I,
CHCly); IR (film): v 2940, 2860, 1650, 1470, 1390,
1360, 1300, 1240, 1170, 1130, 1080, 1070, 1000, 940,
880, 830, 770; 'H NMR (CDCl;, 400 MHz): ¢ 6.24
(dd, *J12-61 ‘J13=15, H-1), 469 (dd, 1H
3J23—19 H-2), 4.43 (dd, 1H, 3J34—69 H-3), 4.16
(dd, 1H, *Js6=10.3, *Js4 = 5.0, H-6), 4.01 (dd, 1H,
3J45—103 H-4), 3.97 (dd, 1H, *J56-102 H-6), 3.81
(ddd, 1H, H-5); 1.20-1.10 (m, 21H, TIPS); 0.99, 1.06
(2s, 18H, (#-Bu),Si); '*C NMR (CDCls, 100.6 MHz): §
142.7 (d, 189, C-1), 105.3 (d, 165, C-2), 77.5, 72.7, 70.7
(3d, 145, C-3, C-4, C-5), 65.9 (t, 145, C-6), 27.4, 26.9
(2q, 125, (CH;CSi1)), 22.7, 19.8 (2s, (CH;3)3CSi), 18.1
(q, 125, (CH3),CHSIi), 12.4 (d, 120, (CH5CSi)), CI-MS
(NHs): 442 (IM]", 1), 399 (5), 317 (11), 269 (36), 229
(2), 119 81 (100); Anal. Calcd for C35sH7,04Si,Sn: C,
62.39; H, 10.47. Found: C, 62.26; H, 10.38.

4.3. (—)-4,6-O-|Di(tert-butylsilylidene)]-1-tributylstannyl-
3-O-tris(isopropyl)-p-glucal 7

tert-Butyllithium (1.5M in THF, 25 mL, 40.5 mmol)
was added dropwise to a stirred solution of (27 g,
6.11 mmol) in anhyd THF (135mL), cooled to
—78 °C. After stirring at 0 °C for 1 h, it was cooled to
—78°C and tributyltin chloride (11 mL, 40.80 mmol)
was added dropwise under stirring. After additional
stirring at —78 °C for 30 min, the mixture was quenched
by water (270 mL). The water phase was extracted by
light petroleum ether (270 mL, three times). The organic
phases were combined, dried over MgSQ,, and concen-
trated in vacuo. FC (AcOEt/hght petroleum ether,
8/1000) 4.9.g (90%), colorless oil. [o 15 = =31, [0]3, =

=34, (o =39, [oliss = 68, [ofigs = ~82 (c
1.15, CHCL); IR (film): v 3580, 3360, 2930, 2890,
2860 1605, 1460, 1360, 1250, 1160, 1100, 1080, 1060,
1010, 990, 885, 820, 770, 680; 'H NMR (CDCl;,
400 MHz): 6 4.69 (dd, 1H *J,5=1.9, H-2), 4.39 (dd,
1H, 3J34=70, H-3), 411 (dd, IH, 2J66-103
J56—50 H-6); 3.96 (dd, 1H, %J45—103 H-4), 3.90
(dd, 1H, *Js56 = 5.2, H-6), 731 (ddd, 1H, H-5); 1.55-
1.49, 135 1.21, 0.94-0.86 (3m, 27H, BugSn) 1.20-1.10
(m, 21H, TIPS), 0.99, 1.06 (2s, 18H, (7-Bu),Si); "*C
NMR (CDCI;, 100.6 MHz): ¢ 162.1 (s, C-1), 116.1 (d,
164, C-2), 77.7, 73.0, 71.5 (3d, 145, C-3, C-4, C-5),
66.2 (t, 145, C-6), 28.8, 27.1 (2t, 130 and 1t, 166
(CH3CH,CH,CH,»);Sn), 27.4, 26.9 (2q, 145, (CH5CS1)),
22.7, 19.8 (2s, (CH3)3CSi), 18.1 (q, 125, (CH;3),CHSI),

13.7 (q, 125, (CH3CH,CH,CH,);Sn), 12.3 (d, 125,
(CH3CSi)); CI-MS (NH3): 675 ([M—¢t-Bu]", 21), 441
(11), 369 (8), 291 (16), 235 (22), 119 (38), 81 (100); Anal.
Calcd for C,3Hy604S1,C: 62.39, H, 10.47. Found: C,
62.26; H, 10.38.

4.4. (—)-1,6-Anhydro-2-0O-benzyl-3,4-dideoxy-4-O-|(trifl-
uoromethyl)sulfonyl]-$-p-erythro-hex-3-eno-pyranose 10

n-BuLi (1.6 M in hexane, 1.00 mL, 1.6 mmol) was added
dropwise to a solution of (MesSi),NH (0.34 mL,
1.63 mmol) in 6 mL of THF at 0 °C. The mixture was
stirred at 0 °C for 15 min and cooled to —78 °C. HMPA
(0.080 mL) was added followed by a solution of 9
(190 mg, 0.236 mmol) in 1.0 mL of THF. Stirring was
continued at this temperature for 2 h. 2-[N,N-Bis(tri-
fluoromethylsulfonyl)amin]-5-chloropyridine (640 mg,
1.63 mmol) was then added in one portion. The mixture
was stirred for 2 h and warmed to 20 °C. Water (1 mL)
was added. The solution was extracted with Et,O (5 mL,
three times). The combined organic phases were dried
(anhyd Na,SO,) and the solvent was removed in vacuo.
FC (3:97 EtOAc/light petroleum ether) 258 mg
(85%0),  colorless  oil. (o2 = =71, [o]3, = =73,
M55 = =85, [l = —154, [ofios = —185 (¢ 15,
CHCly); IR (film): v 2965, 1672, 1452, 1362,
1214, 1138, 1069; *C NMR (CDCl;, 100.6 MHz): 6
7.45-722 (m, SH, Ph), 575 (dt, °Jo3= 4.2,
4113—4135—12 H-3), 5.60 (s, H-1), 4.78 (d,
3Jse=4.2, H-5), 4.66 (s, 2H, PhCH,0), 3.95 (d,
2] 7.3, Ha-6), 3.83 (d, *Jo3=4.2, H-2), 3.76 (dd,
3Js.60 = 4.2, Hb-6); °C NMR (CDCl3): § 149.9 (s, C-
4), 137.3 (s Ph), 128.6 (d, 161, Ph), 128.2 (d, 161, Ph),
127.9 (d, 158, Ph), 113.2 (d, 170, C-3), 100.5 (d, 181,
C-1), 73.0 (d, 149, C-2), 71.8 (t, 141, PhCH,0), 71.6
(d, 149, C-2), 68.9 (t, 152, C-6); CI-MS (NH;): 384
(IM+NH,4]", 2), 178 (2), 97 (12), 91 (100), 90 (2), 89
(1), 77 (2); Anal. Caled for C14H304F3S: C, 45.90; H,
3.58; S, 8.75. Found: C, 45.99; H, 3.62; S, 8.57.

4.5. (-)-((15,4R,55)-4-(Benzyloxy)-6,8-dioxabicyclo
[3.2.1]-oct-2-en-yl)((4aR,8R,8a R)-2,2-di-tert-butyl-8-
((triisoprop- ylsilyl)oxy)-4,4a,8,8a-tetrahydropyrano-
[3,2-d] [1.3.2]dioxasilin-6-yl)methanone 11

OTIPS  OBn

In a reaction tube dried under vacuum were placed,
under argon, Pd,(dba); (225 mg, 0.25 mmol) and triphen-
ylarsine (80 mg, 0.25 mmol). The flask was degassed, on
the vacuum line and filled with argon (three times). The
catalyst was dissolved in NMP (10 mL) and lithium
chloride (140 mg, 0.75 mmol) and a small amount of
activated charcoal were added (weighted in a glove
box). Then the organostannane 7 (1.2 g, 1.25 mmol) in
NMP (10 mL) and triflate 10 (450 mg, 1.25 mmol) in
NMP (10 mL) were added. The reaction mixture was
placed in a stainless steel autoclave and stirred for
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18 h under CO (50 bar) at 50 °C. After releaving pres-
sure, the reaction was quenched by 5 mL of aqueous
KF (1 M) solution and stirred for 5 min. Then the solu-
tion was filtered through a pad of Celite and rinsed with
ether. The aqueous layer was extracted again with ether.
The organic phases were combined, dried (MgSO,), and
concentrated in vacuo. FC (light petroleum ether/EtOAc
95:5) 600 mg (79%), colorless oil. [a]5, = —14, [0]2), =
CIL [ = 120 [ = 24 = 34 (c
3.5, CHCI) IR (film): v 2924, 1740, 1652, 1471, 1364,
1234, 1012, 902, 828, 772, 651; 1H NMR (CDC13,
400 MHz): ¢ 7.3-7.2 (m, 5H, C6H5) 6.75 (m, *Jo3 2.4,
H-3), 5.73 (d, 1H, *Jy 3 =2.4, H-3'), 5.58 (s, 1H, H-1),
5.14 (d, J56b—40 H-5), 4.50 (s, 2H, CHzPh) 4.56
(dd, 1H, 24 Jps =71, H4), 427 (q, IH,
2166:103 *Jse 4.9, H-T'a), 4.1-4.0 (m, 2H, H-5,
7'b), 3.95 (m, 1H, H-6"), 3.74 (1H, *Jeuep = 4.0, H-6a),
3.7-3.6 (m, 2H, H2 H-6b), 1.2-0.9 (m, TIPS, Si(z-
Bu),); '*C NMR (CDCl;, 100.6 MHz): 6 186.4 (s, C-
1), 1489 (s, C-2), 140.1 (s C-4), 135.2 (CH,—Ph)
128.5-127.8 (Ph), 134.0 (d, 160, C-3’) 115.0 (d, 160, C-
3) 100.2 (d, 170, C-1), 73.7 (d, 140, C-4'), 72.1 (d, 140,
C-5%), 70.9 (C-5), 70.3 (d, 140, C-2), 69.9 (d, 140, C-
6"), 71.5 (t, 150, C,Ph), 68.8 (t, 150, C-6), 66.0 (t, 150,
C-7), 27.6, 27.0 (2q, 130, Si(C(CHz)s),), 22.8 (s,
Si(C(CH3)3),), 18.1 (g, 12.2 (d, 120, SiCH(CHs),)); CI-
MS (NH;): 704 ([M+18]*, 100), 687 (M+1, 55), 643
(16), 613 (5), 513 (14), 461 (22), 384 (42), 286 (12), 235
(22), 201 (86); HRMS: Calcd for Cs;Hs304Si,Na:
709.35679. Found: 709.35251 ((M+Na™]).

4.6. (—)-((1S,4R,55)-4-(Benzyloxy)-6,8-dioxabicyclo|3.2.1]-
oct-2-yl)((4aR,8 R ,8aR)-2,2-di-tert-butyl-8-((triisopropyl-
silyl)oxy)-4,4a,8,8a-tetrahydropyrano[3,2-d] [1.3.2]diox-
asilin-6-yl)methanone 21

OTIPS  OBn

Compound 11 (1.3 g, 8.56 mmol) was dissolved in THF
(10 mL), degassed by argon, and placed under argon
atmosphere. Afterwards Mo(CO)s (84 mg, 0.32 mmol)
together with phenylsilane (1.2 mL, 9.6 mmol equiv)
were added. The mixture was heated under reflux for
4h, and quenched by slow addition of water
(0.01 mL). The reaction mixture was concentrated,
water was added, and the mixture was extracted with
ether (10 mL, five times). The organic solution was dried
(MgSO4) and the solvent evaporated in vacuo.
FC (Florisil, light petroleum ether/EtOAc 9:1),
750 mg  (55%) colorless oil. [a]s, = =57 [0, =
47,  [o)mg =27, |ulns =26, [ofas=-33 (c
0.55, CHCly); IR (ﬁlm) v 2943, 2865, 1710, 1637,
1471, 1365, 1192, 1111, 1064, 1017, 921, 891, 846, 826;
'"H NMR (CDCl;, 400 MHz): 6 5.80 (d, *J,» =24, H-
1), 530 (s, 1H, H-3"), 4.80 (d, J45—06 H-5), 455
(dd, *Jyu = 10.2, CH,Ph) 4.47 (dd, *J3 4 = 2.4, H-4"),
4.09 (dd, 1H, 3J7f,7b/ =0.6, H-7"), 3.99 (m, 1H, H-5'),

4.75 (d, 1H *Js; = 8.0, H-6), 3.95 (t, 1H, *Js7 10.0 H-
7'), 3.9-3.8 (m 2H, H-6,6"), 3.75 (dd, *Je 6 = 2.4, H-6),
3.45 (d, 1H, 3ng4 12, H-4). 211 (m. 1H, H-2),
1.90, 1.85 (2dd, 2H, *J3,4 = 6.7, H-3 and H-3), 1.1-
0.9 (m, 41H, 2TIPS, Si(r-Bu),); *C NMR (CDCl;,
100.6 MHz): 6 194.3 (s, C-1), 148.6 (s, C-2'), 138.1,
128.6-125.8 (s, 2d 135, Ph), 111.4 (d, 160, C-3'), 101.4
(d, 170, C-1), 77.3 (d, 150, C-6'), 73.3 (t, 145, C-
7), 72.1 (t, 140, CH,Ph), 71.8 (d, 140, C-5), 70.9 (d,
135, C-4'), 67.8,(d, 140, C-5), 65.8 (t, 140, C-7), 44.8
(d, 145, C-4), 39.1 (t, 145, C-3), 27.6, 27.0 (2q, 130,
Si(C(CH3)3),), 22.8 (s, Si(C(CH3)s),), 18.1 (q, 125,
SiCH(CH;),), 12.4 (d, 120, SiCH(CH,),); CI-MS
(NHs): 706 ((M+1]*, 5), 645 (1), 513 (15), 455 (25),
430 (10), 258 (8), 83 (100); HRMS: Calcd for Calcd
for Cs3;HgoOgSi,Na:  711.3724.  Found: 711.3706
((M+Na"]).

4.7. (-)-(S)-((1S,4R,5S5)-4-(Benzyloxy)-6,8-dioxabicyclo-
[3.2.1]oct-2-yl)((4aR,8 R,8a R)-2,2-di-tert-butyl-8-((triiso-
propylsilyl)oxy)-4,4a,8,8a-tetrahydropyrano|3,2-d]
[1.3.2]dioxasilin-6-yl)methanol 22

To a solution of 21 (150 mg, 0.26 mmol) in THF (5 mL),
cooled at —78 °C, was added dropwise K-Selectride
(0.20 mL, 0.3 mmol). The reaction mixture was stirred
overnight, allowing the temperature to rise to 20 °C.
Then methanol (2 mL) and a satd solution of NH,4CI
in methanol (2 mL) were added. After stirring at 20 °C
for 1h, the mixture was filtered over a pad of Celite.
The reaction mixture was concentrated in vacuo. FC
(light petroleum ether/EtOAc 8:2) 115 mg (75%), color-
less oil. [ ]§89 = —43, [a ]577 =35, [« ]54516 = —20, [« ]425

—18, [oc]25 —16 (¢ 0.5, CHCI;); IR (film): v 3434,
2941 2864, 1668, 1668, 1470 1388, 1335, 1151, 1107,
1065, 1014, 917, 882, 826, 769, 652; 'H NMR (CDCl;,
400 MHz): ¢ 7.3-7.2 (m, 5H, C¢Hs), 5.38 (s, 1H, H-1),
505 (s, 1H, H-3'), 4.85 (m, 1H, H-1'), 4.63 (2d, 2H,
J12—102 CH,Ph), 454 (d, 2H, *J5 4 3.6, H-4), 4.15
(q. 1H, *J775=8.6, *Jg; =438, H7’) 3.91-3.51 (m,
4H H6/6 H-5', H-7"), 3.50 (s, 1H, H-2), 2.07 (d, 1H
2J33 = 12.1, H-3), 1.88 (m, 2H, H-4, H-3b), 1.2-0.9
(m, TIPS, Si(-Bu),); *C NMR (CDC13, 100.6 MHz):
0 153.9 (s, C-2') 137.8, 128.5, 127.8 (2d, 120, CH,Ph),
102 (t, 65, C-3%), 100 (d, 160, C-1), 77.9 (d, 150, C-5"),
76.2 (d, 145, C-4"), 73.1 (d, 125, C-1'), 72.4 (d, 150, C-
5), 71.4, (d, 145, C-6'), 71.3, 71.0 (t, 150, CH,Ph, d,
150, C-2), 68.3 (d, 145, C-6), 66.0 (t, 135, C-7'), 38.2
(C-4) 274, 27.0 (2q, 130, Si(C(CH3)3),), 22.8 (s,
Si(C(CH3)3),), 19.8 (t, 135, C-3) 18.1 (q, 125,
SiCH(CHj),), 12.2 (d, 120, SiCH(CHs),); CI-MS
(NH3): 708 (M+1]" 3) 647 (1), 517 (5), 477
(1), 415 (1), 258 (8), 83 (100); MALDI-HRMS: Calcd
for C3;HgOgSi,Na:  713.3881. Found: 713.3806
((M+Na']).
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4.8. (—)-(4aR,7S,8R,8aR)-6-((15,4R,5S)-4-(Benzyloxy)-
6,8-dioxabicyclo|3.2.1]oct-2-yl)-2,2-di-tert-butyl-8-((tri-
isopropylsilyl)oxy)hexahydropyrano|3,2-d][1.3.2]dioxasi-
lin-7-0l 23

A solution of 22 (150 mg, 0.25 mmol) in dry THF
(5 mL) at 0 °C was treated with a borane-THF solution
in THF (2 M, 1.5 mL) and stirred at 20 °C overnight. A
10% aq NaOH solution (3 mL) was added, followed by
3 mL of a 30% aq H,O, solution. After stirring at 25 °C
for 1 h, the mixture was poured into water and extracted
with ethyl ether. The organic layer was dried (MgSO,)
and concentrated in vacuo. FC (light petroleum ether/
EtOAc 7525) 100mg (65%), colorless oil. (020 =
14, [02, =116, [o]n, = —0.69, [o]ss = —0.69,
[a]igs——o 58 (¢ 0.075, CHCly); IR (ﬁlm) v 3445,
2923, 2765, 1704, 1695, 1475, 1390, 1317, 1201, 1105,
1077, 1015, 918, 883, 825, 770, 655. "H NMR (CDCl;,
400MHZ) 0 73 7.2 (m, SH, C4Hs), 5.41 (s, 1H, H-1),
4.72 (2d, 2H, *J,, =10.2, CH,Ph), 4.54 (m, 2H, H-1,
H-5), 4.10 (m 1H, H7’) 3.91-3.60 (m, 7H H6 H-
6b H-5', H-7', H4/ H-2'), 3.51 (dd, 1H, *J5 3 104
J3,4, 9.2, H-3"), 336 (m, 1H, H-2), 225 (d, 1H
2J33=12.1, H-3), 1.94 (m, 1H, H4) 1.83 (m, 1H, H-
3b), 1.2-0.9 (m, TIPS, Si(z-Bu),); '*C NMR (CDCls,
100.6 MHz): 6 137.8, 128.5, 127.8 (s and 2d, 130,
CH,Ph), 100.7 (d, 140, C-1), 79.9 (d, 140, C-2"), 79.5
(t, 145, C-3'), 77.4 (d, 135, C-1'), 75.0 (d, 140, C-4'),
72.4 (t, 135, CH,Ph), 71.3,(d, 145, C-2), 71.0 (d, 140,
C-5), 69.2 (d, 140, C-6'), 67.5 (t, 145, C-6), 66.4 (t,
140, C-7), 39.2 (d, 140, C-4), 27.4, 27.0 (2q, 130
Si(C(CHs3)3)2), 22.8 (s, Si(C(CHj3)s)2), 19.8 (t, 135, C-
3), 18.1(q, 125, SiCH(CH3),), 12.2 (d, 120, SiCH(CHj3)»);
CI-MS (NHs): 726 ((M+1]", 5), 665 (3) 391 (1), 286 (7),
91 (100) 83 (56); MALDI-HRMS: Calcd for C37Hg4OgS-
i,Na: 713.3881. Found: 713.3856 ((M+Na™]).

4.9. (—)-(4aR,65,9a5,10R,10aR)-6-((15,4R,55)-4-(Benzyl-
oxy)-6,8-dioxabicyclo|3.2.1]oct-2-yl)-2,2-di-zert-butyl-8-
((triisopropylsilyl)oxy)hexahydro-4 H-[1,3]dioxino[4’,
5':5,6]pyrano|3,2-d][1.3.2]dioxasiline 24

OTIPS  OBn

A solution of 23 (60 mg, 0.08 mmol) in 2,3-dimethoxy-
propane (5mL) was treated with p-toluenesulfonic
acid (pH 3) and stirred at 20 °C under a dry atmosphere
of argon. Once TLC showed full conversion satd aq
soln of NaHCO; (10 mL) was added and the organic
phase washed with brine (10 mL), water (10 mL), dried
(MgSOy), and concentrated in vacuo. FC (light
petroleum ether/EtOAc 9:1) 55 mg (73%), colorless

oil, [550 = =30, |5, = 20, (o33 = 12,
o]0 = —10, [a]505 = —9.9 (¢ 0.33, CHCly); IR (film): v
2855, 1730, 1470, 1380, 1330, 1220, 1100, 925,
880, 825, 760, 655; '"H NMR (CDCls, 400 MHz): 6
7.5-7.2 (m 10H, S-C6H5, C6H5), 575 (d 1H
3,/12-49 H-1), 465 (dd, 1H, °*J;, =617,
314 =102, H-1'), 4.60 (dd, 2J—117 CH,Ph). 4.20
(m, 1H, H-7'a), 4.06 (dd, 1H, *J3 4 =9.2, *J, 5 =24,
H-4'), 3.9-3.8 (m, 2H, H-6/, H-7'b), 3.75-3.65 (m.
3H, H-5, H-6a, H-5'), 3.56- 3.47 (m, 2H, H-3', H-6b),
3.45 (dd, *Jy 3 =9.2, 1H, H-2), 3.37 (m, 1H, H-2).
2.13 (m, H-3a), 2.02 (dd, 3Jgd4:105 J45—12 1H,
H-4), 1.53 (m, 1H, H-3b), 1.37, 1.30 (2s, 3H, CH;—
C-CH;), 1.2-0.9 (m TIPS, Si(-Bu),); 3C NMR
(CDCls, 100.6 MHz): 6 138.6 (s, CH,Ph), 128.5, 127.8
(2d, 120, CH,Ph), 101 (d, 140, C-1), 100 (s, CH;—
C-CH3), 79.8 (d, 130, C-5), 77.8 (d, 130, C-2'), 76.5 (t,
135, C-3"), 76.4 (d, 140, C-6'), 73.6 (d, 145, C-1'),
72.6 (d, 135, C-2), 71.0 (t, 150, CH,Ph), 69.5 (t,
140, C-6), 68.2 (d, 125, C-4'), 67.6 (d, 130, C-5), 66.6
(t, 125, C-7"), 35.8 (d, 135, C-4), 27.4, 27.0 (2q, 130,
Si(C(CH3)3),), 25.3, 232 (2q, 130, CHs-C-CHj;),
22.8 (s, Si(C(CH3)3),), 19.9 (t, 130, C-3), 18.1 (q, 125,
SiCH(CHs),), 122 (d, 120, SiCH(CHs),); CI-MS
(NHs): 766 (M+1]%, 1), 749 (10), 647 (3), 517 (8),
409 (1), 266 (3), 201 (6), 91 (100); HRMS: Calcd for
CaoHesOoSibNa:  771.42996.  Found  771.43494
((M+Na']).

4.10. (—)-((25,5R,65)-5-(Benzyloxy)-3-((4aR,6S,9aS,10R,
10aR)-2,2-di-tert-butyl-8,8-dimethyl-10-((triisopropyl-
silyl)oxy)hexahydro-4 H-[1,3]dioxino[4’,5':5,6]pyrano|3,2-
d|[1.3.2]dioxasilin)-6-(phenylthio)tetrahydro-2 H-pyran-2-
yDmethanol 25

To a solution of 24 (30 mg, 0.045 mmol) and TMSSPh
(0.05mL, 0.135 mmol) in CH,Cl, was added portion-
wise under argon atmosphere Znl, (0.3 mg,
0.045 mmol). The resulting suspension was stirred at
20 °C for 1 h, diluted with EtOAc and filtered through
a Celite pad. The filtrate was washed successively with
satd aq soln of NaHCO; (10 mL) and water (10 mL),
dried (MgSQO,) and concentrated in vacuo. The residue
was dissolved in dry THF/MeOH (1:1, 2 mL) containing
K>COj3. The mixture was stirred for 10 min at 20 °C, di-
luted with EtOAc (5mL), washed successively with
brine (10 mL) and water (10 mL), dried (MgSO,), and
concentrated. FC (light petroleum ether/EtOAc 8:2)
20 mg (75%), colorless oil. [e]2, = —112, [2]3, = —8.6,
2 =13, [a2 =-98, [3=-36 (c 209,
CHCly); IR (film): v 3444, 2863, 1715, 1581, 1470,
1456, 1396, 1386, 1096, 921, 884, 921, 884, 828, 740,
684, 654; 'H NMR (CDClg, 400 MHz): ¢ 7.3-7.2 (m,
5H, C6H5) 5.38 (s, 1H, H-1), 4.64 (m, 1H, H5) 4.63
(d 2H, °J=11.1, CH,Ph), 4.58 (dd, lH 3y = 6.8,
J14—108 H-1), 4.10 (dd, 1H, J747br—96
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3Jg .7 = 4.8, H-Ta'), 3.85- 3,75 (m, 4H, H-6'. H-6a, H-
7b’, H-5'), 3.72 (dd, 1H, 3y 3 =92, H-2'), 3.65 (dd,
1H, *J5.4 =9.2, H-3'), 339 (m, 2H, H-6b, H-4'), 3.26
(dd, 1H, h3=49, J,=24, H-2), 2.15 (d, 1H
2J3a30 = 13.1, H-3a), 1.84 (m, 1H, H-4), 1.73 (m, 1H,
H-3b), 1.34, 1.23 (2s, 3H, CHs-C-CHs), 1.2-0.9 (m,
TIPS, Si(t-Bu),); '*C NMR (CDCl;, 100.6 MHz): ¢
137.8, 128.4, 127.8 (s, 2d, 130, CH,Ph, SPh), 88.1 (s,
C-1), 87.6 (s, CH;—C-CH3), 78.9 (d, 120, C-5), 77.3 (d,
123, C-3), 77.2 (d, 125, C-5'), 74.3 (t, 130, C-6'), 73.6
(C-2), 72.6 (d, 125, C-1'), 71.5 (d, 140, C-2), 71.3 (t,
140, CH,Ph), 66.9 (d, 130, C-4'), 66.7 (d, 140, C-7'),
64.6 (t, 145, C-6), 40.8 (d, 125, C-4), 27.5, 27.0 (2q,
130, Si(C(CHs3)3),), 25.9, 23.8 (2q, 140, CHs-C-CHj),
22.8 (s, Si(C(CH3)3),), 19.9 (t, 130, C-3), 18.1 (q, 125,
SiCH(CH3),), 12.2 (d, 120, SiCH(CH,),); CI-MS
(NHs): 592 ((M+18]*, 25), 575 (IM+1]%, 5), 592 (25),
564 (41), 485 (63), 438 (10), 409 (5), 348 (5), 291 (2),
201 (3), 91 (100); MALDI-HRMS: Calcd for C46H7400-
SSi,Na: 881.4489. Found: 881.4409 ([M+Na™*]).

4.11. (—)-3,6-O-Bis(triisopropylsilyl)-p-galactal 14

To a solution of tri(O-acetyl)-p-galactal 13 (4.0 g,
14.69 mmol) in methanol (60 mL) was added a solution
of MeONa in methanol (5.4 M, 300 pL, 1.62 mmol).
After stirring at 20 °C for 1 h the solvent was evaporated
in vacuo. The crude oil was dissolved in anhyd DMF
(10 mL) and the solvent was evaporated in vacuo. After
having redissolved the crude oil in DMF (65 mL), imid-
azole was added (8.0g, 117.5 mmol), followed by a
dropwise addition of triisopropylsilyl chloride
(13.0 mL, 61.36 mmol). The mixture was stirred at
60 °C for 18 h, then pentane (500 mL) was added and
the solution washed with water (140 mL, five times)
and brine (140 mL). The water phase was extracted with
pentane (100 mL, twice). The combined organic
phases were dried (MgSO4), and concentrated in
vacuo. FC (Et,O/light petroleum ether, 1/9) 53 g
(85%), colorless  oil. [u)hy = —34, [o]2, = —37,
o5 = —41, [ligs = =79, lalies =97 (¢ 1.2,
CHCly); IR (film): v 3550, 3070, 2940, 2860, 1640,
1460, 1380, 1240 1160, 1140, 1090, 1010, 995, 880,
850 810, 680 '"H NMR (C¢Dg): 0 6.34 (dd 1H,
N12=6.3, Y5 1.5, H-1), 456 (dd, 1H, *J55=1.9,
A 1.9, H-2), 449 (dd, 1H, 3Jg4_47 H-3), 4.34
dd, 2Js6=9.6, *Jss=1.7, H-6), 4.16 (dd, *J45-20
J>4=19, H-4), 4.15 (dd, 1H, H-6), 3.98 (dd, 1H, H-
5) 1.20-1.10, 1.09-0.90 (2m, 42H, 2TIPS); 13C NMR
(CDCl;, 100.6 MHz): 6 145.2 (d, 187, C-1), 102.8 (d,
166 C-2), 77.8, 66.2, 65.3 (3d, 140, C-3, C-4, C-5), 62.9
(t, 139, C-6), 18.6, 18.5 (2q, 125, SiCH(CH3)), 12.9,
12.8 (2d, 120, SiCH(CH;),); CI-MS (NH3): 241 (10),
173 (5), 131 (35), 103 (46), 75 (100); Anal. Calcd for
C24H5004Si2: C, 6283, H, 10.98. Found: C 62.80. H
10.95.

4.12. (—)-3,6-Di-O-(isopropylsilyl)-4- O-methoxymeth-
oxy-Dp-galactal 15

A stirred solution of 14 (1.7 g, 3.7 mmol) was cooled to
0°C and methoxymethyl chloride (5 mL, 65.8 mmol)

was added dropwise. Then diisopropylethylamine
(10 mL, 33.3 mmol) and a catalytic amount of tetrabutyl-
ammonium iodide were added. The reaction mixture
was heated to 60 °C until TLC showed the reaction to
be complete (R; 0.25 light petroleum ether/Et,O
10:0.5). The mixture was allowed to cool to 20 °C and
quenched with aqg HCI (1 M, 30 mL). The organic phase
was extracted with pentane (50 mL, three times) then
washed with satd aq soln of NaHCO3;, dried (MgSO,),
and concentrated in vacuo. FC (light petroleum ether/
Et,O 10:0.5) 1.3g (67%), colorless oil. [a]sgg =
—68, [oc]i; = 71, [“]?Ze —81, [O‘]Z —141,
(o205 = —172 (¢ 1.6, CHCl3); IR (film): v 2943, 2866,
1641, 1464, 1389, 1236, 1153, 1099, 1044, 964, 919,
883, 828, 736, 680; lH NMR (CDCl;, 400 MHz): ¢
6.32 (dd, 1H, 3J12—60 *Ji3=1.2, H-1), 5.03 (d, 1H
17=68, CHy O CHy), 475 (d. 1H, CHy,-O-CHy),
4.71 (dd, 1H, 3J23—19 4 =19, H-2), 4.58 (s,
1H, H-4), 4.08-3.97 (m, 4H, H-3, H-5, H-6, H-6'),
3.74 (s, 3H, CH,-O-CH;), 1.07 (m, 42H, 2TIPS);
3C NMR (CDCl;, 100.6 MHz): 143.1 (d, 190, C- 1),
103.7 (d, 170, C-2), 97.2 (t, 164, CH,~O-CHj3), 77.9,
70.6, 66.2 (3 d, 140, C-3.4.5), 62.1 (t, 140, C-6), 55.9
(q, 142, CH,-O-CHjy), 18.0, 17.9, 17.8 (3q, 120,
SiCH(CH3),), 12.2, 11.9 (2d, 120, SiCH(CHj),); CI-
MS (NH;3): 520 ([M+18]", 60), 459 (38), 427 (10),
329 (100), 273 (40), 213 (6), 162 (14), 81 (20); HRMS:
Caled for C,y6Hs5405Si,: 501.3421. Found: 501.3422
(M.

4.13. (—)-3,6-Di-O-(isopropylsilyl)-4- O-methoxymeth-
oxy-1-tributylstannyl-p-galactal 16

To a stirred solution of 15 (1.3 g, 2.6 mmol) in anhyd
THF at —78 °C was added dropwise a 1.5 M soln of #-
butyllithium in pentane (10 mL, 15 mmol). The mixture
was stirred at 0°C for 30 min and then cooled to
—78 °C. Then tributyltin chloride was added dropwise
and the reaction mixture was stirred for 30 min at this
temperature and allowed to warm to 20 °C. After the
addition of aq 1 M HCI (50 mL), the phases were sepa-
rated and the aq phase was extracted with pentane
(100 mL, twice). The combined organic phases were
washed with aq satd soln of NaHCO; (50 mL), dried
(MgS0O,4), and concentrated in vacuo. FC (light
petroleum  ether/Et,O 99:1) 14¢g (71%), colorless
011 [“}229 = 55 [“]237 = =57, [“]gie = —60,
[oc]435 —118, [« ]405 —145, (¢ 2.0, CHCly); IR (film):
v 2957, 2867, 2360, 1600, 1464, 1417, 1378, 1248, 1215,
1152, 1098 1042, 974, 919, 882 832; '"H NMR (CDCls,
400 MHZ) 0 498 (d lH *Jun = 6.6, CH,~O-CH3),
473 (d, 1H, CH,-O-CHj), 470 (d, 1H, /55 = 2.0, H-
2), 4.59 (s, lH H-4), 4.0-3.4, (m, 4H, H3 H5, Ha-6,
Hb-6), 3.43 (s, 3H, CH,-O- CH3) 158 130 (m 27H,
SnBus), 1.07, 1.06 (m, 42H, 2TIPS); '*C NMR (CDCls,
100.6 MHz): 162.5 (s, C-1), 114.8 (d, 160, C-2), 96.9 (t,
160, CH,~O-CHs3) 78.3, 71.4, 66.1 (3d, 150, C-3, C+4,
C-5), 55.7 (q, 142, CH,-O-CHy), 28.9, 27.8, 27.2, 26.8
(4d, 150, Sn(CH,CH,CH,CHy);), 18.1, 18.0, 17.9 (3q,
120, SiCH(CH3),), 12.1, 11.9 (2d, 120, SiCH(CH3),),
13.6 (q, 125, Sn(CH,CH,CH,CHs;);), 9.6 (t, 128,
Sn(CH,CH,CH,CH3);); CI-MS (NHs): 791 (IM+1]*,
100), 750 (9), 618 (32), 501 (30), 462 (22), 308 (35), 250
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(6), 148 (9), 76 (9); HRMS: Calcd for CigHgoOsSi»Sn
791.4560. Found: 791.4559 ([M*]).

4.14. (—)-1-[1',5'-Anhydro-3’,5'-di- O-(isopropylsilyl)-4'-
O-methoxymetyl-p-ribono-hex-1'-en-2'-yl]-2,6-anhydro-
5,7-bis(tert butylsilylidene)-4- O-(isopropylsilyl)-p-ara-
bino-hept-2-en-1-one 20

A solution of 16 (100 mg, 0.14 mmol) and I, (34 mg,
0.134 mmol) in CH»Cl, (2 mL) was stirred at 20 °C for
30 min and then concentrated in vacuo. The residue
was dissolved in THF (2 mL) and added to a solution
of Pd,dbas; (30 mg, 0.033 mmol) and triphenylarsine
(30 mg, 0.1 mmol) in anhyd THF (2 mL). Then a solu-
tion of 7 in THF (2 mL) was added and the reaction
mixture was placed under CO atmosphere (50 bar auto-
clave). The mixture was warmed to 50 °C and stirred for
15h. After releaving pressure, the reaction was
quenched by 5 mL of aqueous KF (1 M) solution and
stirred for 5 min. Then the solution was filtered through
a pad of Celite and rinsed with ether. The aqueous layer
was extracted again twice with ether. The organic phases

were combined, dried (MgSQ,), and concentrated.
FC (EtOAc/light petroleum ether: 95:5) 96 mg (79%)
colorless oil. [a]35 = —6.8, [a], = —6.7, [o], =

—8.0, [dis =18, [dos =26 (c 2.9, CHCL); IR
(film): v 2943, 2866 1679, 1631, 1464 1387, 1364,
1245, 1215, 1155 1112 1106, 1104, 1026, 919, 883, 826,
772, 681, 654; 1H NMR (CDCl;, 400 MHz): 5.83 (d,
1H, 3J34—25 H-3), 5.81 (d, 1H, *Jy 3 =2.0, H-2'),
5.07 (1H, *Jgu = 6,5, CH,-O-CH3), 4.77 (m, 1H, H-
’) 4.73 (d 1H, CH,-O-CHj;), 4. 56 (dd, 1H,
3J34=24, J45—72 H-4), 427 (q, 1H, J77b— 10.0,
3Jo7 =48, H-7), 420 (m, 1H, *J5,=2.0, *J45=3.5,
H-4"), 4.1-4.0 (m SH, H-4, Ha6 H-5', H-6’, Hb-6),
3.88 (m, 1H, J56—103 H-5), 341 (s, 3H, CHZ—O—
CHs), 1.2-0.9 (m, TIPS, Si(7-Bu),); *C NMR (CDCls,
100.6 MHz): 182.8 (s, CO), 148.6, 148.5 (2s, C-2, C-
1), 115.2, 115.1 (2d, 165, C-3, C-2’), 97.2 (t, 163,
CH,-O-CH3), 78.3, 76.5, 73.1, 71.2, 68.0, 67.9 (6d,
145, C4, C-5, C-6 C-3, C-4, C-5'), 61.1, 65.7 (2 t,
145, C-7, C-6'), 55.9 (q, 140, CH,~O-CHy), 27.3, 26.8
(2q, 125, Si(C(CH3)s)2), 2.7, 19.7 (2s, Si(C(CH3)3),),
22.8, 19.9 (s, Si(C(CHs;)3),), 18.1, 18.0, 17.9, 17.8 (4q,
125, SiCH(CHs),), 124, 12.1, 11.8 (3d, 120,
SiCH(CHs;),); CI-MS (NH;3): 988 (IM+18]", 1), 984
(22), 924 (24), 796 (27), 624 (14), 550 (51), 492 (100),
399 (26); HRMS: Caled for CsoHoggOSi4Na:
993.6135. Found: 993.6055 ((M+Na™]).

4.15. (—)-((15,4R,5R)-4-(Benzyloxy)-6,8-dioxabicyclo|3.2.1]-
oct-2-en-2-y)((2R,35,4R)-2-(((diisopropylsilyl)oxy)-
methyl-3-(methoxymethoxy)-4-(8-triisopropylsilyl)oxy)-
3,4-dihydro-2 H-pyran-6-yl)methanone 12

In a reaction tube dried under vacuum were placed,
under argon, Pd,(dba); (225 mg, 0.25 mmol), and triph-

enylarsine (80 mg, 0.25 mmol). The flask was degassed,
on the vacuum line and filled with argon (three times).
The catalyst was dissolved in NMP (10 mL) and lithium
chloride (140 mg, 0.75 mmol) and a small amount of
activated charcoal were added (weighted in a glove
box). Then the organostannane 16 (1.4 g, 1.25 mmol)
in NMP (10 mL) and triflate 11 (450 mg, 1.25 mmol)
in NMP (10 mL) were added. The reaction mixture
was placed in a stainless steel autoclave and stirred for
18 h under CO (50 bar) at 50 °C. After releaving pres-
sure, the reaction was quenched by 5 mL of aqueous
KF (1 M 20 mL) solution and stirred for 5 min. Then
the solution was filtered through a pad of Celite and
rinsed with ether. The aqueous layer was extracted again
with ether. The organic phases were combined, dried
(MgSQ,), and concentrated in vacuo. FC (light petro-
leum ether/EtOAc 95:5) 650 mg (73%), colorless oil.

o5 = 203, [, = =07, [af5 =25, [, =
—36, [o]is = =77 (¢ 2.9, CHCly); IR (film): v 3120,
3094, 3030, 3010, 2910, 1640, 1470, 1320, 1240, 1180,
1130 950, 940, 800, 760; 'H NMR (CDCl;, 400 MHz):

d 7.4 (m, 5H, PhCH,-0), 6.90 (m, 1H, *J,;= 0.4, H-
3), 5.70 (s, 1H, H-3'), 5.62 (s, 1H, H-1), 5.22 (d, 1H,
3Js6 = 4.0, H-5), 5.07 (d, 1H, *Jyy 15 = 5.2, OCH,OCH3),
4.79 (d, 1H, OCH,OCH};), 4.47 (s, 1H, H-4"), 4.67 (dd,
2H, *Jyu = 12, PhCH,), 4.0-4.2 (m, 2H, H-7', H-7'),
3.66, 376 (m, 2H, H-6a, H-6b), 334 (s, 3H.
OCH,OCH;), 1.2-0.9 (m, 42H, TIPS); '*C NMR
(CDCls, 100.6 MHz): 6 186.4 (s, C-1'), 148.9 (s, C-2),
140.1 (s, C-4), 135.2 (CH,—Ph), 128.5-127.8 (Ph), 134.7
(d, 160, C-3"), 113.3 (d, 160, C-3), 101.1 (d, 170, C-1),
100.3 (t, 163, CH,~O-CH;) 78.8 (d, 140, C-4'), 73.4
(d, 140, C-5'), 72.6 (C-5), 70.3 (d, 140, C-2), 69.9 (d,
140, C-6), 71.6, (t, 150, CH,Ph), 69.4 (t, 150, C-6),
69.0 (t, 150, C-7"), 56.0 (q, 140, CH,~O-CHj,), 18.0,
17.9, 17.8 (3q, 120, SiCH(CHs),), 12.2, 11.9 (2d, 120,
SiCH(CH3),); CI-MS (NH;): 774 (M+18]"), 755
(M+1, 50), 623 (15), 605 (5), 531 (14), 442 (22), 383
(42), 296 (22), 235 (22), 207 (76); HRMS: Calcd for
CaoHg600S1,Na:769.4143. Found: 769.4235 ((M+Na*]).
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